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INTRODUCTION
Global sea-level rise is the result of an 

increase in the ocean volume, which evolves 
from changes in ocean mass due to melting of 
continental glaciers and ice sheets, and expan-
sion of ocean water as it warms. To extract the 
20th century rates of sea-level rise from satellite 
altimeters and long-term tide-gauge records, cor-
rections must be applied for vertical land move-
ments that are primarily associated with the gla-
cial isostatic adjustment (GIA) of the solid Earth.

There are various approaches to develop esti-
mates of sea-level rise for the 20th century. First, 
models of GIA have been constructed, and then 
later employed by a number of authors, that pro-
duce global sea-level rise estimates of ~1.8 mm 
a–1 (Peltier and Tushingham, 1989; Douglas, 
1991, 1997; Peltier, 2001; Church and White, 
2006), although the U.S. Atlantic coast shows 
considerable variation in the rate of sea-level 
rise with respect to this global average, depend-
ing upon the GIA model employed (Peltier 
and Tushingham, 1989; Peltier, 1996, 2001; 
Davis and Mitrovica, 1996). Second, global 
positioning systems (GPS) have been used that 
suggest a rate of ~1.9 mm a–1 for the Atlantic 
coast (Snay et al., 2007), which is essentially 

identical to the result reported in Peltier (1996), 
but the errors associated with this technique are 
currently large due to the short time series of 
the GPS data. A third method of correcting for 
land movements is to use geological data. Salt-
marsh sedimentary sequences enable the recon-
struction of relative sea-level change over a 
much longer period. This data-based technique 
improves on model-based approaches, because 
subtle tectonic effects are incorporated into both 
the geological and 20th century rates. Gornitz 
(1995) estimated a 20th century sea-level rise 
of 1.5 ± 0.7 mm a–1 for the U.S. Atlantic coast. 
However, this geological database included sea-
level index points up to 6 kyr B.P., thus sea-level 
rise rates included meltwater contributions from 
the remnants of the major ice sheets (Peltier, 
2002). Peltier (2001) demonstrated that the 
Gornitz (1995) result was a signifi cant underes-
timate because it was based upon a linear least 
squares fi t to the data over a range of time suffi -
ciently long that sea level could not be assumed 
to be rising linearly.

METHODOLOGY

Construction of a Sea-Level Index Point
To be a validated sea-level index point, a 

sample must have a location, an age, and a 
defi ned relationship between the sample and a 

tidal level (Shennan, 1986; van de Plassche, 
1986). We constrain this relationship, known as 
the indicative meaning (van de Plassche, 1986), 
using zonations of modern vegetation (Redfi eld, 
1972; Niering and Warren, 1980; Lefor et al., 
1987; Gehrels, 1994), the distribution of micro-
fossils (Gehrels, 1994), and/or δ13C values from 
the radiocarbon-dated sediments (Andrews et 
al., 1998; Törnqvist et al., 2004). We calculate 
the total vertical error of each index point from 
a variety of errors that are inherent to sea-level 
research (Shennan, 1986), including thickness 
of the sample, techniques of depth measure-
ment, compaction of the sediment during sam-
pling, and leveling of the sample to the nation-
wide geodetic datum, NAVD 88 (see Appendix 
A in the GSA Data Repository1). These errors 
exclude any infl uence of the possible change of 
tidal range through time. Each validated index 
point in the database was radiocarbon dated, 
and we present such assays as calibrated years 
before present using CALIB 5.0.1 (Stuiver et 
al., 2005). We used a laboratory multiplier of 1 
with 95% confi dence limits, and employed the 
IntCal04 data set (Reimer et al., 2004).

Geological Records
We assume that the ice-equivalent meltwa-

ter input 4 kyr B.P. to A.D. 1900 is either zero 
( Peltier and Tushingham, 1991; Douglas, 1995; 
Peltier, 1996, 2002) or minimal (Milne et al., 
2005; Church et al., 2008). It is widely accepted 
that the tectonic component along the passive 
margin of the U.S. Atlantic coast is negligible. 
We have signifi cantly reduced the infl uence of 
compaction by only utilizing basal peat samples 
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ABSTRACT
Accurate estimates of global sea-level rise in the pre-satellite era provide a context for 21st 

century sea-level predictions, but the use of tide-gauge records is complicated by the contri-
butions from changes in land level due to glacial isostatic adjustment (GIA). We have con-
structed a rigorous quality-controlled database of late Holocene sea-level indices from the U.S. 
Atlantic coast, exhibiting subsidence rates of <0.8 mm a–1 in Maine, increasing to rates of 1.7 
mm a–1 in Delaware, and a return to rates <0.9 mm a–1 in the Carolinas. This pattern can be 
attributed to ongoing GIA due to the demise of the Laurentide Ice Sheet. Our data allow us 
to defi ne the geometry of the associated collapsing proglacial forebulge with a level of resolu-
tion unmatched by any other currently available method. The corresponding rates of relative 
sea-level rise serve as background rates on which future sea-level rise must be superimposed. 
We further employ the geological data to remove the GIA component from tide-gauge records 
to estimate a mean 20th century sea-level rise rate for the U.S. Atlantic coast of 1.8 ± 0.2 mm 
a–1, similar to the global average. However, we fi nd a distinct spatial trend in the rate of 20th 
century sea-level rise, increasing from Maine to South Carolina. This is the fi rst evidence of 
this phenomenon from observational data alone. We suggest this may be related to the melting 
of the Greenland ice sheet and/or ocean steric effects.

1GSA Data Repository item 2009276, Table DR1 
(site locations of geological data, rates of relative 
sea-level rise from geological data, and GPS vertical 
motions), Figure DR1 (plot of all 212 radiocarbon-
dated basal index points), Figure DR2 (individual 
relative sea-level curves for each of the 19 locations), 
and Figure DR3 (long-term tide gauge records from 
Canada to Virginia, demonstrating the methodol-
ogy used to assess the appropriate error for the tide 
gauges), is available online at www.geosociety.org/
pubs/ft2009.htm, or on request from editing@
geosociety.org or Documents Secretary, GSA, P.O. 
Box 9140, Boulder, CO 80301, USA.
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(salt-marsh peat that directly overlies uncom-
pressible substrate; Jelgersma, 1961). Therefore, 
any changes observed in relative sea level are 
almost entirely from vertical land movements 
due to GIA. To calculate the late Holocene 
rate of relative sea-level rise (RSLR) for each 
location, we excluded the 20th century sea-level 
contribution by expressing all ages with respect 
to A.D. 1900 and adjusted the sea-level axis to 
mean sea level in A.D. 1900 (Appendix B). We 
estimated the rate of late Holocene RSLR by 
running a linear regression over the past 4 k.y. 
with 2σ errors (Shennan and Horton, 2002).

Tide-Gauge Records
We identifi ed 10 suitable tide-gauge records 

along the U.S. Atlantic coast with a nearby geo-
logical record of late Holocene RSLR with min-
imal infl uence of non-GIA subsidence, such as 
groundwater withdrawal (Sun et al., 1999). All 
records are at least 50 years in length to mini-
mize contamination by interannual and decadal 
variability (Douglas, 1991). A single standard 
error was calculated for all the gauges, which 
included a thorough consideration of tide-gauge 
record length (Appendix C).

ANALYSIS
We produced a late Holocene database of vali-

dated sea-level index points from new, unpub-
lished, and published records of basal peats of 
the U.S. Atlantic coast. The validated database 
contains 212 basal sea-level index points for 
the past 4 kyr B.P. from 19 locations that extend 
from Maine (45°N) to South Carolina (32°N) 
(Fig. 1). There is an absence of index points from 
Georgia and Florida. Relative sea level has risen 
along the entire U.S. Atlantic coast during the late 
Holocene, with no evidence of former sea levels 
above present during this time period within our 
validated database. There is a large vertical scat-
ter (over 5 m at 4 kyr B.P.), because the entire 
coastline has been subject to spatially variable 
GIA-induced subsidence from the collapse of the 
proglacial forebulge (Peltier, 1994). From eastern 
Maine (45°N) to northern Massachusetts (42°N), 
relative sea level has risen <3.5 m during the last 4 
kyr B.P., with rates of RSLR <0.8 mm a–1 (Fig. 1; 
Table DR1 in the Data Repository). Along the 
mid-Atlantic coastline from Cape Cod, Massa-
chusetts (41.5°N), to the northern Outer Banks, 
North Carolina (35.9°N), late Holocene RSLR 
of 1 mm a–1 is met or exceeded at 9 of 11 loca-
tions. The highest rates of RSLR are recorded in 
New Jersey, Delaware, and Maryland, where all 
rates are ≥1.2 mm a–1. The maximum RSLR of 
1.7 ± 0.2 mm a–1 is recorded in the inner Dela-
ware estuary. RSLR decreases to <0.9 mm a–1 
from Beaufort, North Carolina (34.7°N), to Port 
Royal, South Carolina (32.4°N). The southern 
North Carolina and South Carolina sites all show 
similar records of RSLR (0.6–0.8 mm a–1).

All tide-gauge locations along the U.S. Atlan-
tic coast show an acceleration in the rate of RSLR 
between the late Holocene geological data and 
the 20th century tide gauges (Fig. 2). Subtracting 
the late Holocene RSLR from the tide gauges 
yields an average 20th century sea-level rise rate 
of 1.8 ± 0.2 mm a–1. This corresponds closely to 
the global average for the past century (Peltier 
and Tushingham, 1989; Douglas, 1991, 1997; 
Peltier, 2001; Church and White, 2006). Despite 
the errors of the tide gauge and geological data, 
there is a north to south increase in the rate of 
20th century sea-level rise. The lowest rate of 1.2 
± 0.6 mm a–1 occurs near the northern end of 
the study area at Portland, Maine, whereas to the 
south it doubles to 2.6 ± 0.3 mm a–1 (Charleston, 
South Carolina) (Fig. 2), a range of 1.4 mm a–1.

DISCUSSION
The geological data constrain the form of 

the ongoing forebulge collapse along the U.S. 
Atlantic coast. This is apparent when the rates 
of late Holocene RSLR are plotted against the 

distance from the center of mass loading of the 
Laurentide Ice Sheet (Fig. 3). Vertical motions 
from continental North America GPS measure-
ments (Sella et al., 2007) and GIA models (Pel-
tier, 2004) suggest that the center of ice loading 
is west of Hudson Bay. Sella et al. (2007) calcu-
lated maximum vertical velocities of +10 mm 
a–1, with rates generally decreasing with dis-
tance away from Hudson Bay. Interpolation of 
the GPS observations suggest that the hinge line 
separating uplift from subsidence is offshore of 
the Maine coastline, whereas the geological data 
from two locations in this study suggest that 
Maine is undergoing GIA-related subsidence of 
0.7 mm a–1 (with a maximum uncertainty of 0.5 
mm a–1). Snay et al. (2007) also identifi ed subsi-
dence rates of 1.9 ± 1.0 mm a–1 within Maine 
using coastal GPS stations, but with signifi cant 
spatial variation; two GPS measurements from 
Maine suggest uplift (+1.0 ± 1.2 mm a–1 and 
+0.3 ± 1.0 mm a–1 vertical velocity).

Snay et al. (2007) estimated that the maxi-
mum rate of subsidence (3.1 ± 3.5 mm a–1) 
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Figure 1. Rate of late Holocene relative sea-level rise with 2σ errors for 19 locations along 
U.S. Atlantic coast. Inset plots are examples of locations with sea-level index points plotted 
as calibrated age before A.D. 1900 versus change in relative sea level (RSL) relative to mean 
sea level (MSL) in A.D. 1900 (m). Red line is linear regression for each site. Rates and errors 
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occurs within Maryland. Similarly, the geologi-
cal data show late Holocene RSLR increasing 
from eastern Maine to a maximum within the 
mid-Atlantic but of a smaller magnitude (Mary-
land, 1.3 ± 0.2 mm a–1; Delaware, 1.7 ± 0.2 mm 
a–1; New Jersey, 1.4 ± 0.7 mm a–1). The geologi-
cal rates of subsidence decline rapidly with dis-
tance from Hudson Bay along the U.S. Atlantic 
coast compared to the GPS observations. The 
GPS observations suggest that high rates of 
subsidence from the collapse of the forebulge 
extend into Virginia and the Carolinas (Sella et 
al., 2007; Snay et al., 2007). For example, the 
geological data within Chesapeake Bay, Vir-
ginia, estimate subsidence of 0.9 ± 0.3 mm a–1 
compared to nearby GPS observations of 3.5 ± 
1.6 mm a–1 (Sella et al., 2007) and 2.6 ± 1.2 mm 
a–1 (Snay et al., 2007). Although the GPS data 
agree with the general form of the forebulge 
collapse revealed by the geological data, there 
are signifi cant spatial variations. The GPS data 

are limited by the short time series with a maxi-
mum length of eight years on the U.S. Atlantic 
coast between Maine and South Carolina (Snay 
et al., 2007), which results in large errors. The 
errors of the GPS data quoted above are at the 
1σ level; if 2σ errors are used, the geological 
and GPS rates concur. Furthermore, it has been 
noted elsewhere that continuous GPS measure-
ments may be systematically biased (too posi-
tive), potentially due to inadequate modeling of 
antenna phase center variations and/or the use 
of current terrestrial reference frames (Teferle et 
al., 2009).

Removing the GIA signal from the tide-gauge 
records with our geological observations of sub-
sidence reveals a signifi cant amount of spatial 
variability in the rate of 20th century sea-level 
rise that increases from north to south. A simi-
lar slope has been identifi ed by GIA modeling 
(Peltier, 1996), but this is the fi rst evidence from 
observational data alone. There may be a sig-
nifi cant contribution to the 20th century sea-level 
changes from Greenland Ice Sheet mass-balance 
changes (Marcos and Tsimplis, 2007) and/or 
ocean steric effects (Domingues et al., 2008). 
The effects of Greenland mass loss on the U.S. 
Atlantic coast would result in a north to south 
increase in sea-level rise (Conrad and Hager, 
1997). Estimates of Greenland mass loss from 
GRACE (Gravity Recovery and Science Experi-
ment; http://www.csr.utexas.edu/grace/ since 
A.D. 2002 vary between 100 and 270 Gt a–1, 
which is equivalent to a sea-level rise of ~0.4–
0.7 mm a–1 (Velicogna and Wahr, 2006; Peltier, 
2009). Rignot et al. (2008) suggested that Green-
land is currently losing mass at the equivalent 
sea-level rise rate of ~0.6 mm a–1. Steric effects 
may also play an important role in 20th century 
sea-level change (Miller and Douglas, 2004; 

Wake et al., 2006; Church et al., 2008). Church et 
al. (2008) proposed signifi cant spatial variation 
in ocean thermal expansion for the upper 700 m 
along the U.S. Atlantic coast with areas possess-
ing negative and positive thermal contributions 
to sea-level rise over the period 1993–2003. 
Wake et al. (2006) analyzed hydrographic data 
sets of the Atlantic coast and identifi ed a large 
steric effect for the southern portion of the coast-
line that would infl uence 20th century RSLR, but 
Miller and Douglas (2006, 2007) concluded that 
there were only minor steric contributions to sea-
level rise during the 20th century, north of Cape 
 Hatteras, North Carolina.

The geological data document the continued 
response of the U.S. Atlantic coast to the col-
lapsing Laurentide forebulge at a signifi cantly 
improved resolution. Furthermore, we have 
demonstrated that the removal of the variation 
imposed on the tide gauges by this ongoing 
deformation cannot fully explain the spatial 
variations seen within the tide-gauge records. 
Therefore, care should be taken when employ-
ing tide-gauge records as a validation of GIA 
models (Davis and Mitrovica, 1996; Davis et 
al., 2008). The database of late Holocene sea 
levels provides a new tool both for testing 
hypotheses relating to this spatial variability, 
as well as refi ning models of ocean dynamical 
effects. From analyzing climate models, Yin et 
al. (2009) found that a dynamic regional rise in 
sea level is induced by a weakening meridional 
overturning circulation in the Atlantic Ocean 
(superimposed on the global mean sea-level 
rise). The application of a comparable meth-
odology to de-trend relative sea-level records 
from Canada (e.g., Gehrels et al., 2004), 
the U.S. Gulf coast (e.g., Törnqvist et al., 
2004), and the Caribbean (e.g., Toscano and 
Macintyre, 2003) using geological data will 
further elucidate the spatial variability of 20th 
century sea-level rise.
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